Google Gemini Chat

AI-powered Q&A system for Express using Google Gemini API with fast and intelligent natural language responses.

aigooglegeminiexpressqnanatural-languagenodejs
v1.0.0AI

Overview

A modern AI-powered Q&A component built with Google Gemini’s API and Express.js. It exposes a REST API endpoint that receives a user's question and returns an intelligent, context-aware answer powered by Google's Gemini models. Designed to be flexible, lightweight, and easy to integrate with any frontend application.

Installation

CLI
npx backternity add ai-google-gemini-qna

What This Does

Sets up an Express service for text-based Q&A powered by Google Gemini AI.

Files & Folders Created

File / PathDescription
/src/config/gemini.jsInitializes Gemini client with API key.
/src/services/qnaService.jsHandles question requests and AI responses.
/src/routes/qna.jsExpress route for /api/ai/qna endpoint.
.env.exampleConfiguration for Gemini API and model.
server.jsExample Express entry point.

Files to be modified

File / PathDescription
server.jsAdds QnA API route (/api/ai/qna).
.envAdds GEMINI_API_KEY and MODEL_NAME configuration.

Configuration

# Google Gemini API Configuration
GEMINI_API_KEY=your-google-gemini-api-key
MODEL_NAME=gemini-1.5-flash
PORT=3001

Frontend Integration

Integrate the Q&A API easily with any frontend — especially Next.js — to power intelligent chatbot or assistant features.

POST/api/ai/qna

Sends a user question to Gemini and returns an AI-generated response.

Example

1// Example (Next.js / React) 2import { useState } from 'react'; 3 4export default function GeminiQnA() { 5 const [question, setQuestion] = useState(''); 6 const [answer, setAnswer] = useState(''); 7 8 async function askGemini() { 9 const res = await fetch('/api/ai/qna', { 10 method: 'POST', 11 headers: { 'Content-Type': 'application/json' }, 12 body: JSON.stringify({ question }) 13 }); 14 const data = await res.json(); 15 setAnswer(data.answer || 'Error: No response'); 16 } 17 18 return ( 19 <div className="space-y-4 max-w-md mx-auto p-4"> 20 <h2 className="text-lg font-semibold text-foreground">Ask Google Gemini</h2> 21 <input 22 value={question} 23 onChange={(e) => setQuestion(e.target.value)} 24 placeholder="Ask a question..." 25 className="w-full border border-border bg-background/50 rounded-lg px-3 py-2 text-sm text-foreground" 26 /> 27 <button 28 onClick={askGemini} 29 className="px-4 py-2 rounded-lg bg-emerald-500 text-white text-sm hover:bg-emerald-600 transition" 30 > 31 Ask 32 </button> 33 {answer && ( 34 <div className="p-3 border border-border/40 bg-secondary/30 rounded-lg text-sm text-muted-foreground whitespace-pre-wrap"> 35 <strong>Answer:</strong> {answer} 36 </div> 37 )} 38 </div> 39 ); 40}

Usage

1// Simple API request example 2const res = await fetch('/api/ai/qna', { 3 method: 'POST', 4 headers: { 'Content-Type': 'application/json' }, 5 body: JSON.stringify({ question: 'What is quantum computing?' }) 6}); 7const data = await res.json(); 8console.log('Gemini says:', data.answer);

Get in Touch

For partnerships, collaborations, or custom backend components - let’s build something powerful together.

Send us a message

Reach us directly

Email

team@backternity.dev

Quick Answers

Are components free?

Yes, they’re absolutely free to use.

Do you offer custom work?

Absolutely, we build scalable backend systems tailored to your stack.

How often are updates released?

Monthly, with new components, optimizations, and features.

Google Gemini Chat – AI Component | Backternity